On the Fractional Chromatic Number of Monotone Self-dual Boolean Functions
نویسندگان
چکیده
We compute the exact fractional chromatic number for several classes of monotone self-dual Boolean functions. We characterize monotone self-dual Boolean functions in terms of the optimal value of a LP relaxation of a suitable strengthening of the standard IP formulation for the chromatic number. We also show that determining the self-duality of monotone Boolean function is equivalent to determining feasibility of a certain point in a polytope defined implicitly.
منابع مشابه
no-homomorphism conditions for hypergraphs
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
متن کاملMinimum Self-dual Decompositions of Positive Dual-minor Boolean Functions
In this paper we consider decompositions of a positive dual-minor Boolean function $f$ into $f=$ $f_{1}f_{2}\ldots\ldots.f_{k}$ , where all $f_{j}$ are positive and self-dual. It is shown that the minimum $k$ having such a decomposition equals the chromatic number of a graph associated with $f$ , and the problem of deciding whether a decomposition of size $k$ exists is
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملPartial Clones Containing all Boolean Monotone Self-dual Partial Functions
The study of partial clones on 2 := {0, 1} was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial functions are both maximal partial clones on 2. Several papers dealing with intersections of maximal partial clones on 2 have appeared after Freivald work. ...
متن کاملDichotomy Results for Fixed Point Counting in Boolean Dynamical Systems
We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}. For a class F of boolean functions and a class G of graphs, an (F ,G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007